

STTA106U

PRELIMINARY DATASHEET

TURBOSWITCH™"A". ULTRA-FAST HIGH VOLTAGE DIODE

MAIN PRODUCTS CHARACTERISTICS

I _{F(AV)}	1A		
V _{RRM}	600V		
t _{rr} (typ)	20ns		
V _F (max)	1.5V		

FEATURES AND BENEFITS

- SPECIFIC TO "FREEWHEEL MODE" OPERA -TIONS: FREEWHEEL OR BOOSTER DIODE
- ULTRA-FAST AND SOFT RECOVERY
- VERY LOW OVERALL POWER LOSSES IN BOTH THE DIODE AND THE COMPANION TRANSISTOR
- HIGH FREQUENCY OPERATIONS
- SURFACE MOUNT DEVICE

SOD6 (Plastic)

DESCRIPTION

The TURBOSWITCH is a very high performance series of ultra-fast high voltage power diodes from 600V to 1200V.

TURBOSWITCH "A" family drastically cuts losses in both the diode and the associated switching IGBT and MOSFET in all "Freewheel Mode" operations and is particularly suitable and efficient

in Motor Control Freewheel applications and in Booster diode applications in Power Factor Control circuitries.

Packaged in SOD6 surface mount envelope, these 600V devices are particularly intended for use on 240V domestic mains.

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
V_{RRM}	Repetitive Peak Reverse Voltage	600	V
V_{RSM}	Non Repetitive Peak Reverse Voltage	600	V
I _{F(RMS)}	RMS Forward Current	3.5	Α
I _{FRM}	Repetitive Peak Forward Current (tp = 5 μs, f = 5kHz)	22	Α
Tj	Max. Operating Junction Temperature	125	°C
T _{stg}	Storage Temperature range	- 65 to + 150	°C

TM: TURBOSWITCH is a trademark of SGS-THOMSON Microelectronics

May 1995 - Ed: 1B 1/6

STTA106U

THERMAL AND POWER DATA

Symbol	Parameter Conditions		Value	Unit
R _{th(j-l)}	Junction to Lead Thermal Resistar	23	°C/W	
P ₁	Conduction Power Dissipation (see fig. 2)	$I_{F(AV)} = 0.8A$ $\delta = 0.5$ Tlead= 93°C	1.4	W
P _{max}	Total Power Dissipation Pmax = P1 + P3 (P3 = 10% P1)	Tlead= 90°C	1.5	W

STATIC ELECTRICAL CHARACTERISTICS (see Fig. 2)

Symbol	Parameter	Test Conditions		Min	Тур	Max	Unit
VF *	Forward Voltage Drop	I _F = 1A	Tj = 25°C Tj = 125°C		1.1	1.75 1.5	٧
I _R **	Reverse Leakage Current	V _R = 0.8 x V _{RRM}	Tj = 25°C Tj = 125°C		250	10 750	μΑ

Test pulses widths : * tp = 380 μ s, duty cycle < 2% ** tp = 5 ms , duty cycle < 2%

DYNAMIC ELECTRICAL CHARACTERISTICS

TURN-OFF SWITCHING (see Fig. 3)

Symbol	Parameter	Test Conditions	Min	Тур	Max	Unit
t _{rr}	Reverse Recovery Time	Tj = 25 °C $I_F = 0.5$ A $I_R = 1$ A $Irr = 0.25$ A $I_F = 1$ A $dI_F/dt = -50$ A/ μ s $V_R = 30$ V		20	50	ns
I _{RM}	Maximum Recovery Current	$Tj = 125$ °C VR = 400V I _F = 1A $dI_F/dt = -8$ A/ μ s $dI_F/dt = -50$ A/ μ s		1.6	0.6	А
S factor	Softness factor	$Tj = 125$ °C $V_R = 400V$ $I_F = 1A$ $dI_F/dt = -50 A/\mu s$		TBD		/

TURN-ON SWITCHING (see Fig. 4)

Symbol	Parameter	Test Conditions	Min	Тур	Max	Unit
t _{fr}	Forward Recovery Time	Tj = 25°C I _F = 1 A, dI _F /dt = 8 A/μs			500	ns
V _{Fp}	Peak Forward Voltage	measured at, 1.1 × V _F max			10	V

APPLICATION DATA

The TURBOSWITCHTM "A" is especially designed to provide the lowest overall power losses in any "Freewhell Mode" application (see fig. 1) considering both the diode and the companion transistor, thus optimizing the overall performance in the end application.

The way of calculating the power losses is given below:

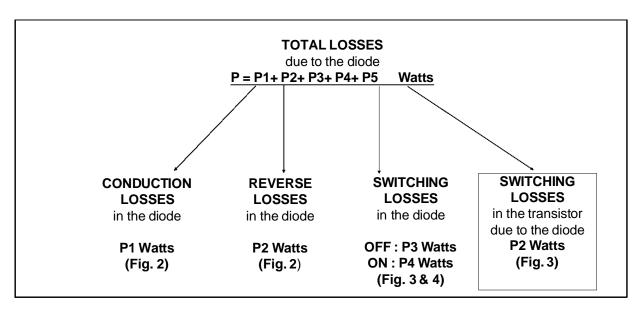
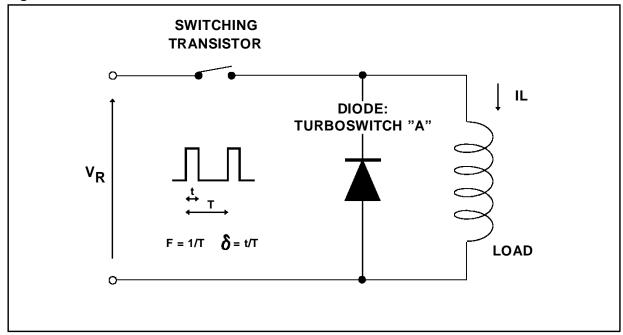



Fig. 1: "FREEWHEEL" MODE

APPLICATION DATA (Cont'd)

Fig. 2: STATIC CHARACTERISTICS

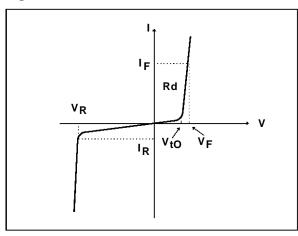
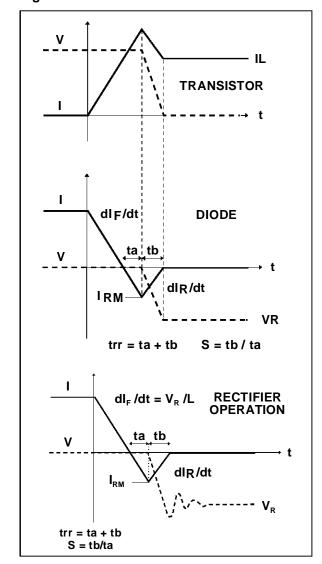



Fig. 3: TURN-OFF CHARACTERISTICS

Conduction losses:

$$P1 = V_{t0} \times I_{F(AV)} + R_{d} \times I_{F}^{2}(RMS)$$

with

$$V_{t0} = 1.15 \text{ V}$$
 $R_d = 0.350 \text{ Ohm}$ (Max values at 125°C)

Reverse losses:

$$P2 = VR \times IR \times (1 - \delta)$$

Turn-on losses:

(in the transistor, due to the diode)

P5 =
$$\frac{V_R \times I_{RM}^2 \times (3+2 \times S) \times F}{6 \times dI_{F}/dt} + \frac{V_R \times I_{RM} \times I_L \times (S+2) \times F}{2 \times dI_{F}/dt}$$

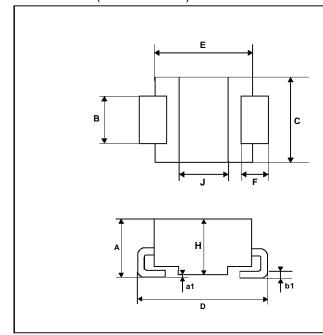

Turn-off losses (in the diode):

$$P3 = \frac{V_R \times I_{RM}^2 \times S \times F}{6 \times dI_F/dt}$$

P3 and P5 are suitable for power MOSFET and IGBT

APPLICATION DATA (Cont'd)

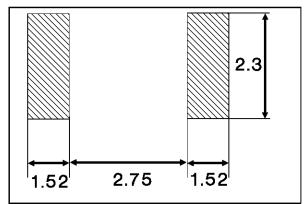
Fig. 4: TURN-ON CHARACTERISTICS


Ratings and characteristics curves are ON GOING.

Turn-on losses:

P4 = 0.4 (VFP - VF) x IFmax x tfr x F

PACKAGE MECHANICAL DATA


SOD6 Plastic (JEDEC outline)

	DIMENSIONS				
REF.	Millimeters		Inches		
	Min.	Min. Max.		Max.	
Α	2.44	2.62	0.096	0.103	
a1	0.10	0.20	0.004	0.008	
В	1.96	2.11	0.077	0.083	
b1	0.25	0.35	0.010	0.014	
С	3.65	3.93	0.143	0.155	
D	5.39	5.59	0.212	0.220	
E	4.15	4.30	0.163	0.170	
F	1.00	1.27	0.039	0.050	
Н	2.33	2.41	0.092	0.095	
J	2.05	2.13	0.080	0.084	

FOOTPRINT DIMENSIONS

SOD6 Plastic

Marking: T01 Laser marking Logo indicates cathode

Information furnished is believed to be accurate and reliable. However, SGS-THOMSON Microelectronics assumes no responsability for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of SGS-THOMSON Microelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. SGS-THOMSON Microelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of SGS-THOMSON Microelectronics.

© 1995 SGS-THOMSON Microelectronics - Printed in Italy - All rights reserved.

SGS-THOMSON Microelectronics GROUP OF COMPANIES

Australia - Brazil - France - Germany - Hong Kong - Italy - Japan - Korea - Malaysia - Malta - Morocco - The Netherlands Singapore - Spain - Sweden - Switzerland - Taiwan - Thailand - United Kingdom - U.S.A.

